Food web-assimilated resources and a century of environmental change in the NE Pacific

Megan Feddern, Gordon Holtgrieve, Eric Ward

Graduate Student Symposium 2020

How does the environment impact *resource utilization by coastal marine food webs?*

Challenges of Scale

 $\delta^{13}C$ · Community Composition · Cellular Growth · [CO₂]

Additive & Subtractive

 δ¹⁵N
Nitrogen Sources
Isotope composition of N

Large scale indicators

Scaling to food webs

Indices spatially and temporally integrated on food web relevant scales

δ¹⁵N_{Phe} is variable but relatively stable through time across regions

δ¹³C appears to decrease during recent decades in most regions Sex specific foraging patterns are not a longterm phenomenon

How does the environment impact *resource utilization by coastal marine food webs?* How does the environment impact resource utilization by coastal marine food webs?

Discharge

- Columbia River
- Kuskokwim
- Seward Line

Sea Surface Temperature

• Mean Summer (GoA, EBS, WA)

Climate Regime

- Pacific Decadal Oscillation (PDO)
- North Pacific Gyre Oscillation (NPGO)
- Multivariate ENSO Index (MEI)

Upwelling

- Coastal Upwelling (Spring, Summer)
- Average winter (Oct-Apr) along-shelf and cross shelf wind vector

 NO_3^-

WASHINGTON

 Climate regime is an important indicator of food web assimilated nitrogen

Columbia River Discharge (High

- Salish Sea food webs incorporate significantly higher $\delta^{15}N_{Phe}~and~\delta^{13}C$ compared to coastal WA
 - δ¹³C combined difference in taxa (Seagrass or macroalgae)
 - δ^{15} N legacy of anthropogenic influence

GULF OF ALASKA Regionally distinct food web assimilated ightarrownitrogen Negative correlation with SST • • CO₂ concentration Community composition Opposite effect of NPGO on food web ightarrowassimilated production compared to WA

- Chemical tracers of consumer tissues provide food web-specific information
 - Sea ice, anthropogenically derived nitrogen
- Oceanic conditions are the primary drivers of temporal changes in food web assimilated primary production and nitrogen resources

Acknowledgments

MUSEUM

UNIVERSITY OF ALASKA

MUSEUM MORTH

Variation in bottom up control of food web assimilated productivity by nitrogen resources

Generalists integrate over multiple resource pathways

Limited migration, high site fidelity Are not utilizing resources in different locations

5 - 10 km from haul out sites and at depths < 200 m

Are not susceptible to integrating nearshore vs. offshore $\delta^{13}C$ gradients

Controlled feeding studies *Minimal trophic enrichment*

Optimal consumer for stable isotope interpretation

δ¹³C declining trend remains after Suess effect correction

